
ISSN 0005-1179 (print), ISSN 1608-3032 (online), Automation and Remote Control, 2025, Vol. 86, No. 8, pp. 756–768.
c© The Author(s), 2025 published by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 2025.
Russian Text c© The Author(s), 2025, published in Avtomatika i Telemekhanika, 2025, No. 8, pp. 82–98.

SPECIAL ISSUE

Optimal Robust Tracking of a Discrete Minimum-Phase Plant

under the Unknown Bias and Norm of an External

Disturbance and the Unknown Norm of Uncertainties

V. F. Sokolov

Komi Scientific Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
e-mail: sokolov@ipm.komisc.ru

Received March 3, 2025

Revised May 20, 2025

Accepted June 27, 2025

Abstract—This paper addresses a problem of the optimal robust tracking of a given bounded
reference signal for a discrete-time minimum-phase plant with a known approximate nominal
model under a bounded and biased external disturbance and coprime factor perturbations. The
bias and norm of the external disturbance and the gains of the perturbations are assumed to
be unknown. The control criterion is the worst-case asymptotic tracking error in the class
of the disturbances and perturbations under consideration, which depends on the above un-
known parameters and the reference signal. A solution of the optimal tracking problem with a
given accuracy is based on optimal errors quantification within the �1-theory of robust control,
polyhedral estimation of the unknown parameters, and treating the control criterion as the
identification criterion.

Keywords : robust control, optimal control, bounded disturbance, uncertainty, errors quantifi-
cation, set-membership approach

DOI: 10.31857/S0005117925080053

1. INTRODUCTION

This paper addresses the optimal tracking problem of a linear discrete dynamic plant with a
given and tested transfer function. By assumption, the plant is affected by a bounded external
disturbance with an unknown bias and unknown bounds and by perturbations (uncertainties)
for its output and control with unknown norms (gains). The problem is addressed within the
�1-theory of robust control, laid down in [1, 2] and corresponding to the signal space �∞ of bounded
real sequences. The problem has the following difficulty: to minimize a criterion in the form of
the worst-case asymptotic tracking error in the class of admissible disturbances, it is necessary
to compensate for the unknown bias and justify an optimal estimator for the criterion under the
non-identifiability of all the unknown parameters mentioned above.

The solution of the optimal tracking problem described is based on optimal errors quantification
using the set-membership approach and treating the control criterion as an ideal identification
criterion. The set-membership approach in system identification, initially involving the assumption
of known upper bounds on deterministic disturbances, gained wide popularity in the late 1980s
and was reduced to the development of computable upper and lower approximations (ellipsoids,
parallelotopes, etc.) of parameter sets consistent with measurement data. (Here, we refer to the first
special issues of two leading journals on control theory [3, 4].) Applications of these approximations
to control problems are rarely described and are accompanied by various additional assumptions,
such as a priori known stabilizing control. This approach is criticized by supporters of stochastic
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disturbance models for its conservatism caused by a priori assumptions on known upper bounds
on disturbances. In parallel, active research in the field of identification for robust control and
uncertainty quantification began in the early 1990s. A decade and a half later, it was noted in the
review [5] that estimation of uncertainty sets was often mistakenly attributed to identification for
control, as in most of the corresponding studies, the control objective was not considered during
identification. The problems of model verification and uncertainty estimation remain topical to the
present time [6, 7], but are still considered mainly beyond the context of control problems and with
artificial criteria motivated by the objectives of identification itself.

In this paper, bias estimation and errors quantification are based on the set-membership ap-
proach and treating the control criterion as an ideal identification criterion. The potential appli-
cability of such a combined framework arises from two circumstances. First, in the �1-theory of
robust control, explicit representations are obtained for asymptotic performance indices in terms
of induced norms of the transfer functions of a closed-loop control system and the norms of all
disturbances and uncertainties [8–11]. Second, the bounded disturbance model allows for the di-
rect use of current measurement data for online model verification [12]. In the general case, such
an approach to control-oriented identification is computationally intractable due to the complexity
of computing current optimal estimates. But it is computationally tractable in the case of linear
or linear-fractional, with respect to the estimated parameters, performance indices [13]. In the
problem under consideration, the performance index (control criterion) is a non-convex quadratic-
fractional function of the unknown parameters (see the representation (9)). For a known bias, the
control criterion becomes linear-fractional, and the problem of errors quantification for this case
was solved in [14], where the idea of estimating the unknown bias using a grid of test values was
also formulated. Below, we rigorously justify this idea and prove a rigorous result on the solution of
the asymptotically optimal tracking problem with a given accuracy. Simulation results and related
remarks illustrate the effectiveness of the solution proposed.

Notation:
|ϕ| is the Euclidean norm of a vector ϕ ∈ R

n;
xts = (xs, xs+1, . . . , xt) for a real sequence x = (· · · , x−1, x0, x1, · · · );
|xts| = maxs�k�t |xk|;
‖x‖ss = lim supt→+∞ |xt|;
‖x‖∞ = supt |xt| is the norm in the space �∞ of bounded sequences;
‖x‖1 =

∑+∞
k=0 |xk| is the norm in the space �1 of absolutely summable sequences;

‖G‖ =
∑+∞

k=0 |gk| = ‖g‖1 is the induced norm of a stable linear time-invariant causal system G :
�∞ → �∞ with a transfer function G(λ) =

∑+∞
k=0 gkλ

k.

2. THE PLANT MODEL AND MEANINGFUL PROBLEM STATEMENT

The plant model is described by the equation

a(q−1)yt = b(q−1)ut + vt, t = 1, 2, 3, . . . , (1)

where yt ∈ R is the measured output of the plant at a time instant t, ut ∈ R is the control input,
vt ∈ R is a total disturbance, and q−1 is the backward shift operator (q−1yt = yt−1). The initial
conditions y01−n = (y1−n, . . . , y0) are arbitrary, and ut = 0 for t � 0. The polynomials

a(λ) = 1 + a1λ+ . . .+ anλ
n, b(λ) = b1λ+ . . .+ bmλm

characterize the nominal model of the plant, i.e., the model without the disturbance v. The total
disturbance v has the form

vt = cw + δwwt + δyΔ1(y)t + δuΔ2(u)t, ‖w‖∞ � 1, δw > 0, δy > 0, δu > 0. (2)
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The parameters cw and δw in (2) characterize the bias of the external disturbance cw + δwwt and
the upper bound on the unbiased disturbance δww, respectively. The numbers δy > 0 and δu > 0
are the gains (induced norms) of the perturbations affecting the output and control, respectively,
and

|Δ1(y)t| � pyt = max
t−μ�k�t−1

|yk|, |Δ2(u)t| � put = max
t−μ�k�t−1

|uk|. (3)

In the �1-theory of robust control, these perturbations are called uncertainties with limited mem-
ory μ, which ensures the independence of the asymptotic dynamics of the closed-loop control system
from the initial data. The uncertainty memory μ is chosen by the designer to be arbitrarily large,
but not infinite, without compromising the guaranteed control performance. The description of
disturbances in the form (2), (3) is equivalent [10, 11] to the inequalities

|vt − cw| � δw + δypyt + δuput ∀t. (4)

A priori information about the plant is contained in the following assumptions.

A1. The polynomials a(λ) and b(λ) of the nominal plant are known, b1 �= 0.

A2. The roots of the polynomial b(λ)
λ lie outside the closed unit circle of the complex plane.

A3. The parameter column vector δ = (δw, δy , δu)T is unknown, and the bias cw ∈ [cwmin, c
w
max]

is unknown, albeit with given cwmin and cwmax.

A4. The asymptotic upper bound ‖r‖ss of the reference signal r or its upper bound is known.

Assumption A1 also covers the case when the “true” nominal model is unknown and its esti-
mator, obtained by some identification method, is available for testing. Assumption A2 ensures
the boundedness of the control input u if the plant output y is bounded. (Such a plant is called
minimum-phase.) Assumption A4 will be commented upon after the rigorous formulation of the
problem at the end of Section 3. Another mandatory assumption restricting the norms of the
perturbations will be introduced in Section 3 after Theorem 1.

Meaningful problem statement: it is required to design a control law minimizing the worst
asymptotic tracking error of a given bounded signal for a set of disturbances satisfying inequali-
ties (4).

To solve the optimal problem with a given accuracy, one needs to quantify the errors online (i.e.,
determine their unknown parameters δ) to estimate the tracking performance and compensate for
the unknown bias cw.

3. THE TRACKING PERFORMANCE OF AN OPTIMAL CONTROLLER
UNDER A KNOWN BIAS cw. PROBLEM STATEMENT

Let r = (r1, r2, r3, . . .) be a given bounded signal (r ∈ �∞). The control criterion of the tracking
problem has the form

Jμ(c
w, δ) = sup

v∈V
‖y − r‖ss, ‖y − r‖ss := lim sup

t→+∞
|yt − rt|, (5)

where V is the set of all disturbances v satisfying inequalities (4).

Consider a controller described by the equation

b(q−1)ut = (a(q−1)− 1)yt + rt − cw. (6)

Note that (6) specifies the value of ut−1, not ut, which does not figure in this equation. For the
output of the closed-loop control system (1), (6), we then obtain

yt − rt = vt − cw = δwwt + δyΔ1(y)t + δuΔ2(u)t. (7)
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Due to the arbitrariness and unpredictability of the right-hand side in (7), the controller (6) is
optimal for the control criterion (5).

Definition 1. The closed-loop system (1), (6) is said to be robustly stable in the class of distur-
bances V if Jμ(c

w, δ) < +∞.

To formulate a theorem on the performance of the optimal controller (6), we denote its transfer
functions relating y and r to the control input u :

Guy(λ) =
a(λ)− 1

b(λ)
, Gur(λ) =

1

b(λ)
.

Theorem 1. Under Assumptions A1 and A2, the following assertions are true.

1) The closed-loop system (1), (6) is robustly stable in the class V with a disturbance memory
μ = +∞ if and only if

δy + δu‖Guy‖ < 1. (8)

For the system with the zero initial conditions y01−n and μ = +∞,

J(cw, δ) := J+∞(cw, δ) =
δw + δy‖r‖ss + δu(|cw|+ ‖r‖ss)‖1/b(q−1)‖

1− δy − δu‖Guy‖
. (9)

2) For the system with arbitrary initial conditions y01−n and μ < +∞,

Jμ(c
w, δ) � J(cw, δ) ∀μ > 0, (10)

and if the sequence |r| uniformly often falls into the neighborhood of the upper limit ‖r‖ss (see the
definition in [10]), then for any initial conditions

Jμ(c
w, δ) ↗ J(cw, δ) (μ → +∞), (11)

where the sign ↗ means monotonic convergence from below as μ → +∞.

The proof of Theorem 1 was given in [14].

The final assumption (A5) restricting the norms of the perturbations follows from Theorem 1.

A5. A number δ̄ is known such that

δy + δu‖Guy‖ � δ̄ < 1. (12)

Assumption A5 is not restrictive compared to the robust stability condition (8). According
to the meaning of the problem, the parameter δ̄ is assigned by the designer and can be chosen
arbitrarily close to 1. But for values of δy + δu‖Guy‖ close to 1, the control criterion Jμ(c

w, δ)
becomes too large and the nominal model with the given tested polynomials a(λ) and b(λ) or the
plant with such perturbations can be considered unacceptable.

Problem statement. Under a priori information A1–A5 and a given tracking signal r, it is
required to design a feedback control law ut = Ut(y

t
1, u

t−1
1 ) (with finite memory) that ensures the

inequality
‖y − r‖ss � J(cw, δ) (13)

with a given accuracy.

The main difficulty of the problem is to ensure inequality (13) under the non-identifiability of cw

and δ (see subsection 4.1).

The index (9), used below as an identification criterion, depends on ‖r‖ss. If this value is a priori
unknown, the recursively computable non-decreasing estimators Rt = max1�k�t |rk| � ‖r‖∞ can be
used instead to obtain a fundamentally theoretically unimprovable tracking performance guarantee
with ‖r‖ss replaced by ‖r‖∞.
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4. OPTIMAL TRACKING

The solution of the problem is based on optimal errors quantification for the nominal model
being tested.

4.1. Optimal Errors Quantification with a Known Bias cw

Due to the plant equation (1) and inequalities (4), given a known bias cw, complete information
about the unknown δ at a time instant t is contained in the a priori assumption A5 and the inclusion

δ ∈Dt =
{
δ̂� 0 | |a(q−1)yk− b(q−1)uk − cw|� δ̂w+ δ̂ypyk+ δ̂upuk ∀k� t

}
, (14)

where δ̂ = (δ̂w, δ̂y , δ̂u)T. The system of inequalities in (14) is equivalent to the description of sys-
tem (1)–(4) on the interval [1, t] for any control ut−1

0 . Then the best estimator of the parameter δ
in terms of the control criterion J, consistent with the measurements yt0 and ut−1

0 , has the form

δt = argmin
δ̂∈Dt

J(cw, δ̂). (15)

The optimal problem (15) is a linear-fractional programming problem with the unknown row vec-
tor δ̂. It is reduced to a linear programming problem in the standard way by introducing an
additional real variable [15]. The number of linear inequalities with respect to δ̂ in the description
of the sets Dt can infinitely increase as t grows. To ensure the boundedness of the number of
inequalities and the convergence of the polyhedral and vector estimators of the unknown column
vector δ in finite time, we choose the parameter ε1 > 0, which specifies the dead zone size when
updating the estimators. The initial polyhedral estimator of δ has the form

P0 =
{
δ̂ = (δ̂w, δ̂y , δ̂u)T | δ̂ � 0, δ̂y + δ̂u‖Guy‖ � δ̄ < 1

}
, δ0 = (0, 0, 0)T.

Denoting
νt+1 = |a(q−1)yt+1 − b(q−1)ut+1 − cw|, φt+1 = (1, pyt+1, p

u
t+1)

T, (16)

we write the new inequality in the description of Dt+1 as

δ ∈ Ωt+1 =
{
δ̂ | νt+1 � δ̂Tφt+1

}
. (17)

Let Pt and δt be the polyhedral and vector estimators of δ at a time instant t. We set

Pt+1 =

{
Pt if νt+1 � δTt φt+1 + ε1|φt+1|
Pt ∩ Ωt+1 otherwise,

(18)

δt+1 = argmin
δ̂∈Pt+1

J(cw, δ̂). (19)

According to (18), the polyhedral estimator Pt+1 is updated by adding a new inequality only
if the distance from δt to the half-space Ωt+1 ⊂ R

3 exceeds ε1. Note that all estimators Pt are
unbounded in the direction of growth of the variable δ̂w.

4.2. Optimal Tracking under an Unknown Bias cw

To compensate for the unknown bias cw ∈ [cwmin, c
w
max], we will estimate it using a grid of the

form

cwk = cwmin + kε2, k = 0, 1, . . . , N, ε2 =
cwmax − cwmin

N
> 0, (20)
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which yields a guaranteed estimator of the bias cw with the desired accuracy ε2/2 by choosing
a sufficiently large N. For each bias cwk and each time instant t, we compute the polyhedral Pk,t

and vector δk,t estimators of the unknown vector δ. We define the best estimate number kt of the
vector δ at a time instant t by the formula

kt = argmin
k

J(cwk , δk,t). (21)

The control input ut at a time instant t is determined by the adaptive controller corresponding to
this estimate:

b(q−1)ut+1 = (a(q−1)− 1)yt+1 + rt+1 − cwkt . (22)

After measuring the output yt+1, the residuals

νk,t+1 = |a(q−1)yt+1 − b(q−1)ut+1 − cwk |

and the estimators Pk,t+1 and δk,t+1 for k = 0, 1, . . . , N are computed according to (16)–(19). (The
corresponding formulas, with the subscript k in each, are omitted here for brevity.)

Theorem 2. Under Assumptions A1–A5, let the plant (1) be regulated by the adaptive con-
troller (22) with the estimator (16)–(19), (21) and the dead zone parameter ε1 in (18) such that

0 < ε1 <
1− δ̄

1 + ‖Guy‖
. (23)

Then the number of updates in the polyhedral Pk,t and vector δk,t estimators is finite for all
k ∈ {0, 1, . . . , N}, and the tracking error satisfies the inequality

‖y − r‖ss � J(cwk∞ , δ∞ + ε1(1, 1, 1)
T) = J(cwk∞ , δ∞) +O(ε1) (as ε1 → 0), (24)

where k∞ is the final value of the best estimate number (21) for the unknown δ, δ∞ is the final
value of δk∞,t, and

J(cwk∞ , δ∞) � J

(
cw, δ +

(
ε2
2

+ ε1, ε1, ε1

))
= J(cw, δ) +O(ε1 + ε2) (ε1 + ε2 → 0). (25)

Proof. For any control ut and any k ∈ {0, 1, . . . , N}, from the plant equation (1) and the repre-
sentation (4) of the total disturbance v it follows that

|a(q−1)yt+1 − b(q−1)ut+1 − cwk | � |cw − cwk |+ δw + δypyt+1 + δuput+1 ∀ t. (26)

By the representation (4), inequalities (26) allow treating the plant as a virtual object of the
form (1), in which the virtual external disturbance has the bias cwk and the norm of the unbiased
external disturbance does not exceed

δ̄wk = |cw − cwk |+ δw. (27)

We prove that the number of updates in the estimators Pk,t and δk,t is finite for all k. For each
update of the estimators, according to (18), we have

ε1|φt+1| < νt+1 − δTt φt+1.

Then, for any δ̂ ∈ Ωt+1, (17) implies

ε1|φt+1| < |(δ̂ − δt)
Tφt+1| � |δ̂ − δt||φt+1|
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and, consequently, |δ̂ − δt| > ε1. Hence, for all k, the distance from the estimator δk,t to the half-
space Ωk,t+1 is greater than ε1. As Pk,t+1 ⊂ Ωt+1, the distance from δk,t to Pk,t+1 is also greater
than ε1. The polyhedral estimators Pk,t decrease monotonically in time due to the addition of new
inequalities. Moreover, the balls of radius ε1/2 centered at δk,t have empty intersection with similar
balls centered at the future updated estimators δk,s (for s > t) and, consequently, with all balls δk,s
for s �= t. It follows that the number of possible updates in the estimators δk,t is finite for all k,

since they all lie in the corresponding bounded sets {δ̂k | J(cwk , δ̂k) � J(cwk , (δ̄
w
k , δ

y, δu)T)}, where
δ̄wk is given by (27).

We denote by δk,∞ = (δwk,∞, δyk,∞, δuk,∞)T the final values, i.e., the limit values of the estima-
tors δk,t achieved in a finite time tk,∞, and set t∞ = maxk tk,∞. Then δk,t = δk,∞ for all t � t∞ and
all k.

Let k∞ be the steady-state number of the best estimate of the vector δ :

k∞ = argmin
k

J(cwk , δk,∞).

Due to (21), we have
J(cwk∞ , δk∞) � J(cwk , δk,∞) ∀k. (28)

For all t � t∞, in view of (18), the residuals (26) in the closed-loop adaptive system with the
steady-state controller satisfy

νk∞,t � δTk,∞φt + ε1|φt| � (δTk∞ + ε1(1, 1, 1))φt . (29)

By Theorem 1, this inequality implies (24).

We denote by
k∗ = argmin

k
|cw − cwk∞ |

the number of the estimate cwk closest to cw. Then |cw − cwk∗ | � ε2/2 and, due to (18),

|a(q−1)yt+1 − b(q−1)ut+1 − cwk∗,t| �
ε2
2

+ δTφt+1 + ε1|φt|

� δ +

(
ε2
2

+ ε1, ε1, ε1

))T

φt+1

(30)

for all t � t∞. According to Theorem 1, this inequality yields

J(cwk∗ , δk∗,∞) � J

(
cw, δ +

(
ε2
2

+ ε1, ε1, ε1

))
. (31)

Using (28) with k = k∗ and (31), we obtain inequality (25). Finally, the term O(ε1 + ε2) in (25)
follows from the fact that J(cw, δ) is a fractional rational function of δ and its denominator is
separated from 0 by Assumption A5. The proof of Theorem 2 is complete.

Remark 1. Inequalities (24) and (25) mean the suboptimality of the solution of the tracking
problem (13). The estimate O(ε1 + ε2) of the solution accuracy in the stated optimal problem,
guaranteed by inequality (25), is only qualitative and cannot be used for computations since cw

and δ are unknown. For a particular realization of the disturbances, the best computable estimate
of the solution accuracy in the optimal tracking problem is the current difference

(ΔJ)t = J(cwkt , δkt,t + ε1(1, 1, 1)
T)− J(cwkt , δkt,t), (32)

which is consistent with the measured data yt1−n, u
t
1 and will be guaranteed as the estimators

converge in a finite time. Although the convergence time of the estimators to the final value is
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unknown, a long period of unchanged estimates actually confirms the validity of this estimate by
Theorem 2. If the current estimate of the solution accuracy is unsatisfactory, one can (at any time)
decrease the dead zone parameter ε1 to improve the accuracy. In this case, the number of updates
in the estimators Pk,t and δk,t may increase. The grid step ε2 has a more transparent impact on
the optimization accuracy (the term ε2/2 is added to the estimates δwk,t) and can be chosen a priori,
while keeping in mind that a decrease in the grid step ε2 will cause an increase in the number of
polyhedral Pk,t and vector δk,t estimators computed in parallel.

5. SIMULATION

Let the plant be described by equation (1) with the unknown parameters

θ∗ = [a∗1, a
∗
2, b

∗
1, b

∗
2, b

∗
3] = [−2.7; 1.8; 2; −3.36; 1.4] (33)

of the nominal model, and let a nominal model with poles 0.7 and 0.8 (the roots of a(λ)) and
zeros 1.1 and 1.3 (the roots of b(λ)) and the coefficient b1 = 2 be available for testing. This nominal
model matches an unstable minimum-phase plant (1) with the parameters

θ = [a1, a2, b1, b2, b3] = [−2.6786; 1.7857; 2; 3.3566; 1.3986], (34)

slightly differing from the parameters (33). Let the plant with the parameters (33) be regulated
by the adaptive controller (22), which is optimal for the tested plant with the parameters (34).
The characteristic polynomial of this closed-loop system has roots 0.7512 ± 8.9242i, 1.3032, and
1.0945 (with an accuracy of 10−4), being greater than 1 by absolute value; therefore, the closed-
loop system without the perturbations is stable. The dynamics of this closed-loop system can be
treated as the dynamics of that with a plant with nominal parameters θ and additional relatively
small perturbations

Δ(yt−1
t−2 , u

t−1
t−2) = (a1 − a∗1)yt−1 + (a2 − a∗2)yt−2 + (b∗1 − b1)ut−1 + (b∗1 − b1)ut−2,

arising from the “inaccurate” coefficients of the nominal model tested. The disturbance vt in the
nominal model with the parameters θ is described by

vt = cw + δwwt + kyt δ
y |yt−1

t−μ|+ kut δ
u|ut−1

t−μ|, |kyt | � 1, |kut | � 1, μ = 20. (35)

Let the tracking signal be rt = 10 sin t for all t.

Example 1. Random disturbances. Let the unknown parameters in the description (35) have the
values

cw = 5, δw = 1, δy = δu = 0.1, (36)

and let wt, k
y
t , k

u
t be independent pseudorandom variables uniformly distributed on [−1, 1]. The

simulation was performed with the following adaptive control parameters: the dead zone parameter
ε1 = 10−6, cwmin = −10, cwmax = 10, and the grid step ε2 = 0.5.

Figure 1 shows the graphs of the tracking error y− r on the left and the current optimal control
criterion estimates J(cwkt , δkt,t) on the right.

Next, the final values J(cwk , δk,1000) for all k, consistent with measurements on the interval
[1, 1000], are presented in Fig. 2 on the left. The switching of the estimates cwkt,t of the unknown
bias cw = 5 are provided in Fig. 2 on the right. Despite the symmetry of the distributions of
the random variables wt, k

y
t , k

u
t about zero, the steady-state bias estimate cw1000 = 4.5 differs from

cw = 5.
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Fig. 2. The values J(cwk , δk,1000) (left) and the switching of the estimates cwkt,t
(right).

In all the numerical experiments with random perturbations and deterministic “oscillatory”
disturbances, the steady-state upper bounds of the tracking error J(cwk∞ , δk∞), consistent with the
measurements, are significantly (several times) smaller than the unknown optimal upper bound of
J(cw, δ). When quantifying the errors, the perturbations do not manifest themselves in any way
since the current estimates δt of the unknown vector δ usually have the form δt = (cwt , 0, 0).

Remark 2. Proponents of stochastic disturbance models in system identification theory con-
stantly criticize the set-membership approach for its seemingly inevitable conservatism due to the
necessary a priori information about upper bounds on deterministic disturbances. (Here, only the
conservatism of the set estimators of unknown parameters is implied.) As illustrated by Example 1,
the use of set-membership estimation and the control criterion as the identification criterion makes
the measurement-consistent performance guarantees non-conservative and, furthermore, improves
performance guarantees compared to the optimal control criterion (5), since particular disturbance
realizations are generally far from the disturbances maximizing the tracking error. This is analo-
gous to the fact that in the stochastic case, average performance indices are better than the worst
possible values on particular “bad” realizations. However, in problems with stochastic disturbances,
disturbance model verification is usually not discussed. The optimality of tracking within the de-
terministic �1-theory is based on the verification of the disturbance model and the use of sufficiently
complete information about unknown parameters obtained in the control process, and the price for
optimality is a corresponding increase in the volume of necessary computations.
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Example 2. “Bad” deterministic disturbances. This example is intended to demonstrate a “bad”
total disturbance under which the presence of perturbations in the total disturbance v becomes
evident.

Consider the plant (33) with the total disturbance (35) and the parameters (36) with the reduced
value δu = 0.05 and the deterministic sequences

wt = cos(50t), kyt = sin(70t), kut = cos(ln(0.5t)). (37)

The left graph in Fig. 3 shows the tracking error of y − r. Under this disturbance, for all t � 498,
the estimates are δukt,t > 0 and δykt,t = 0; the last estimates are δk5000,5000 = (1.6993; 0; 0.0581) and
cw5000 = 4. Thus, starting from the time instant t = 498, the perturbation affecting the control
manifests itself in the estimates δkt,t of the disturbance norms.

As is known, stable linear time-invariant systems may have large deviations from zero due to
nontrivial initial conditions or a bounded disturbance [16, 17]. In Example 2, a large deviation of
the tracking error (with maxt |yt − rt| = 5.4573 × 104) in the nonlinear closed-loop system (1)–(6)
can be caused both by the switching of the controllers corresponding to different estimates of the
biases and by the “asymmetry” of the sequence kut = cos(ln(0.5t)) about zero (see the left graph in
Fig. 4). The current optimal estimates cwkt,t of the unknown bias cw are shown in the right graph
of Fig. 4, where the steady-state bias estimate is cwk∞ = 4 �= cw = 5.
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Remark 3. Despite the tracking error values in the transient mode having the order of magni-
tude 104 (unacceptable in applications), the asymptotic behavior of the tracking error under this
disturbance is characterized by the numbers

max
t∈[4001,5000]

|yt − rt| = 4.4163, max
t∈[4901,5000]

|yt − rt| = 2.7566.

Thus, the factual steady-state tracking error is by an order of magnitude smaller than the final
guaranteed tracking error estimate J(cwk∞ , δk∞) = 30.4421, consistent with the measurement data.
In turn, this estimate is better than the optimal (but unknown!) value J(cw, δ) = 37.2971 guaran-
teed by Theorem 1, despite the low chosen “accuracy” of the bias estimates (the grid size ε2 = 0.5).
Finally, the optimal value J(cw, δ) itself is less than the worst possible asymptotic tracking error
since J(cw, δ) ignores that the tested plant has the nominal parameters θ∗ instead of θ. As a result,
the adaptive compensation algorithm for the unknown bias cw fulfills its purpose despite possible
large deviations of the tracking error from zero and even “adapts” to particular realizations of
the disturbance v, reducing excessive conservatism in the guaranteed performance estimates under
non-“maximizing” disturbances.

Remark 4. According to the above graphs of the switching of the estimates cwkt , the unknown bias
cw is non-identifiable in the description (4) even in the absence of perturbations since control always
deals with particular realizations of the disturbance vt for which the biases (for any reasonable
definition) can be (more correctly, will be) different. That is, the term “bias” with respect to
the constant cw in the description (4) refers precisely to the concept of bias for the class of all
disturbances satisfying (4). At the same time, the current estimates cwkt can (or rather should) be
considered a correct definition (in the context of the control problem being solved) of the current
estimates of the bias for a particular realization of the total disturbance v.

Remark 5. The volume and speed of computations in the above examples are characterized by
the following indicators. The computation time on a laptop with 15.2 GB RAM and an Intel
Core Ultra 5 125H processor is 2.99 s in Example 1 and 15.1169 s in Example 2. The number of
inequalities in the polyhedral estimators Pk,t is 12–15 in Example 1 and 64–81 in Example 2. The
ratio of these limits approximately matches that of the interval lengths, equal to 5. The indicators
of Example 2 on the time interval [1, 10 000] remain the same, meaning that the transient processes
for the particular disturbance v under consideration have already been completed by the time
instant t = 5000. Note that the computation time is determined mainly by the time to calculate the
polyhedral estimators Pk,t and the optimal vector estimators δk,t in R

3 and is almost independent
of the dimension of the nominal parameter vector θ.

Remark 6. The number of inequalities in the description of the polyhedral estimators Pk,t and, as
a consequence, the computation time of the optimal estimates in (21) can be reduced by eliminating
possible redundant inequalities after adding the new inequalities (17); for details, see [18]. In the
simulation results presented, this was not done in order to demonstrate the number of possible
estimator updates even for a very small value of the dead zone parameter ε1 (almost zero from the
viewpoint of assessing the model quality).

6. CONCLUSIONS

This paper has considered a discrete minimum-phase plant with a known or specified nominal
model (for testing), a biased and bounded external disturbance, and perturbations with unknown
norms and an unknown bias. For this plant, the optimal tracking problem of a given bounded
signal with a given accuracy has been addressed. The problem difficulty lies in the need to com-
pensate for the bias based on reasonable optimal estimation of control performance under the
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non-identifiability of all unknown parameters. The solution of this problem involves errors quan-
tification, set-membership estimation of unknown parameters, and the use of the control criterion
as an ideal identification criterion. Within such an approach, it becomes possible to more deeply
understand, demonstrate, and implement the maximum capabilities of feedback control. The im-
portance of feedback research was emphasized by L. Guo, a leading expert in adaptive control and
identification of systems, in the abstract of his paper [19]:

“The main purpose of adaptive feedback is to deal with dynamical systems with internal
and/or external uncertainties, by using the on-line observed information. Thus, a funda-
mental problem in adaptive control is to understand the maximum capability and limits
of adaptive feedback.”

In this context, we also provide a quotation from the abstract of his another paper [20]:

“Finally, we will consider more fundamental problems on the maximum capability and
limitations of the feedback mechanism in dealing with uncertain nonlinear systems, where
the feedback mechanism is defined as the class of all possible feedback laws.”

The solution presented in this paper not only ensures, with a given accuracy, the same tracking
performance estimate as under the known parameters of the nominal plant and disturbances, but
also gives significantly better guaranteed performance estimates depending on particular realiza-
tions of deterministic disturbances. Thus, it is implicitly considered that particular realizations of
disturbances are usually far from those maximizing the control criterion: in order to maximize the
tracking error estimate, the total disturbance vt must not only take maximum values on a long
time interval but also have definite signs on this interval.
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